
The PPSZ Algorithm for Constraint Satisfaction
Problems on More Than Two Colors

Timon Hertli1, Isabelle Hurbain1, Sebastian Millius1, Robin A. Moser1,
Dominik Scheder2, and May Szedlák1

1 ETH Zürich
2 Shanghai Jiaotong University

Abstract. The PPSZ algorithm (Paturi et al., FOCS 1998) is the fastest
known algorithm for k-SAT. We show how to extend the algorithm and
its analysis to (d, k)-Clause Satisfaction Problems where each variable
ranges over d different values. Given an input instance with a unique
satisfying assignment, the resulting algorithm is the fastest known algo-
rithm for (d, k)-CSP except when (d, k) is (3, 2) or (4, 2). For the gen-
eral case of multiple satisfying assignments, our algorithm is the fastest
known for all k ≥ 4.

1 Introduction

In its full generality, the Constraint Satisfaction Problem is NP-complete, so
most researchers believe that we will never find an efficient algorithm for it.
Worse, even getting a substantial edge over trivial exhaustive search is deemed
unlikely by most in the community. Far from despairing, people have tried several
routes around this: finding heuristics that work well in practice [3]; designing
algorithms that are fast as long as a certain complexity measure of the instance
is small [14,1]; coming up with moderately exponential algorithms.

The study of moderately exponential algorithms has been especially fruitful
in two areas: the study of algorithms for k-satisfiability (short k-SAT) and graph
colorability. For example, the algorithm PPSZ solves 3-SAT in O(1.308n) instead
of the trivial 2n; Beigel and Eppstein [2] show how to solve 3-colorability in
time O(1.3289n) instead of the trivial 3n; Björklund and Husfeldt [4] solve k-
colorability in time O(2npoly(n)) instead of the trivial kn.

We focus on the general constraint satisfaction problem where every variable
takes on a value in [d] := {1, . . . , d} and the only structural restriction is that
each constraint may depend on at most k variables. Every constraint can be
written as the conjunction of at most dk clauses, i.e., disjunctive constraints like
(x1 6= 3∨x2 6= 4∨x1 6= 2). Since d and k are considered constant values, we can
re-write an instance as a conjunction of clauses. We call the resulting formula a
(d, k)- clause satisfaction formula and the corresponding decision problem the
clause satisfaction problem. We abbreviate both by (d, k)-ClSP. Note that k-SAT
is the same as (2, k)-ClSP and d-colorability is a special case of (2, d)-ClSP.

In this paper we generalize the PPSZ k-SAT algorithm [10] and Hertli’s anal-
ysis [7] to (d, k)-ClSP. While it is rather straightforward to adapt the algorithm

2

to handle values d ≥ 3, analyzing its running time is much more challenging
than in the Boolean (d = 2) case. This is in contrast to Schöning’s random walk
algorithm [13], where both algorithm and analysis generalize easily to d ≥ 3.

1.1 Which Running Time Can We Expect

We measure the running time of an algorithm in terms of n, the number of vari-
ables in the input formula F . Since all algorithms known so far have exponential
running time, and thus sub-exponential terms do not really influence the run-
ning time, we use the O∗(·) notation: O∗(f(n)) means f(n) · 2o(n). Clearly we
can solve (d, k)-ClSP by simply trying out all dn possible assignments to the n
variables. Checking whether a concrete assignment satisfies the formula can be
done in polynomial time, so this yields a running time O∗(dn), a baseline against
which we measure our algorithms.

Under the assumption that P 6= NP we will not find a polynomial time
algorithm for (d, k)-CSP (expect for the trivial case d = 1 and for (d, k) =
(2, 2), which is 2-SAT). The Exponential Time Hypothesis [8] states that there
is some c > 0 such that every (randomized) 3-SAT algorithm runs in time at
least Ω (2cn). Thus, we cannot expect running times like O(d

√
n) for (d, k)-ClSP.

Indeed, a more sophisticated reduction by Traxler [15] actually shows that under
the Exponential Time Hypothesis, every algorithm for (d, 2)-ClSP takes time at
least Ω (dcn), for some c > 0. In other words, (d, k)-ClSP becomes strictly more
complex as d increases, even for k = 2. This stands in contrast to d-Colorability,
which can be solved in O∗(2n) time [4], for every d. Thus, under the Exponential
Time Hypothesis, (d, 2)-ClSP is strictly more complex than d-Colorability.

1.2 Previous Results

For k-SAT, the currently fastest known (randomized) algorithm is the PPSZ
algorithm by Paturi, Pudlák, Saks and Zane [10]. For instances with a unique
satisfying assignment they give an elegant running time analysis. We call this
case UniqueSAT (or UniqueClSP for d ≥ 3). For the general case (if the instance
has multiple satisfying assignments), the analysis becomes much more difficult,
and it took over ten years until Hertli [7] showed how to obtain the UniqueSAT
time bound in the general case as well.

There are several moderately exponential algorithms for (d, k)-ClSP. Schöning’s

random walk algorithm [13] solves (d, k)-ClSP in time O∗
((

d(k−1)
k

)n)
. Beigel

and Eppstein gave an algorithm for (d, 2)-ClSP running in time O((0.4518d)n)
for d > 3. Feder and Motwani [5] give an (d, 2)-ClSP algorithm based on the
PPZ algorithm [11], the predecessor of the PPSZ algorithm, improving on the
algorithm by Beigel and Eppstein for large d. Li, Li, Liu, and Xu [9] generalized
this to (d, k)-ClSP, but with a sub-optimal weaker analysis. Scheder [12] showed
how to use the full power of PPZ for (d, k)-ClSP.

3

A generic technique for turning any k-SAT algorithm into a (d, k)-ClSP is
downsampling: for each variable x in F randomly forbid all but 2 colors. The
resulting instance F ′ is a (2, k)-ClSP and can be solved by any off-the-shelf k-
SAT algorithm A. We call this algorithm “downsampling + A”. Note that if F is
unsatisfiable then F ′ is; if F is satisfiable then F ′ is satisfiable with probability
at least (2/d)n.

1.3 Our Contribution

We generalize PPSZ to (d, k)-ClSP and analyze its running time. Our upper
bound for UniqueClSP is of the form O∗

(
dSd,kn

)
where Sd,k < 1 is some constant

depending on the number of colors d and the arity k of the constraints. We have
a complicated but more or less explicit formula for Sd,k (involving a sum and an
integral). However, there is an intuitive explanation “what Sd,k is”:

Consider the following random experiment: Let T be an infinite rooted tree
in which every even-level vertex (this includes the root, which has level 0) has
k− 1 children, and every odd-level vertex has d− 1 children (there are no leafs).
Take d−1 disjoint copies of T , choose a value p ∈ [0, 1] uniformly at random and
delete each odd-level vertex of the d− 1 trees with probability p, independently.
Let Y be the number of trees in which this deletion still leaves an infinite path
starting at the root. Obviously, Y is a random variable and 0 ≤ Y ≤ d − 1.
Define Sd,k := E [logd(1 + Y)]. We will devote a section in the appendix to the
computation of Sd,k.

Theorem 1.1. There exists randomized algorithm for Unique-(d, k)-ClSP with
one-sided error that runs in time O∗(dSd,kn).

In the general case (when the input formula may have multiple satisfying
assignments) we fail to match this running time for k = 2, 3. This failure may
well be an artifact of our analysis and not reflect the true success probability of
PPSZ. Let Gd,k := max{Sd,k, 1− 1

2 ln(d)}.

Theorem 1.2. There exists a randomized algorithm for (d, k)-ClSP with one-
sided error that runs in time O∗(dGd,kn).

It turns out that Gd,k = Sd,k for k ≥ 4, so for k ≥ 4 our analysis yields the same
performance bounds for the unique and the general case:

Lemma 1.3. If k ≥ 4 then Sd,k ≥ 1− 1
2 ln(d) and therefore Sd,k = Gd,k.

In the general case, i.e., if F may have multiple satisfying assignments, we
also solve an open problem of [7]: Hertli [7] made a slight (and natural) change
to PPSZ to make his analysis go through. However, he conjectured that is mod-
ification is unnecessary, i.e., the same performance bound would hold for PPSZ
as originally stated. We show that this is indeed the case. Furthermore, our proof
actually gives a bound on the probability that a specific satisfying assignment
α is returned, whereas [7] only gave a bound that some satisfying assignment is
returned.

4

For certain values of d and k Theorem 1.2 gives a worse running time than
the analysis of PPZ in [12]. Since PPSZ is at least as good as PPZ, we know
that for certain parameters Theorem 1.2 gives a suboptimal bound. Still, in the
tables below we list the numbers as given by Theorem 1.2 so that the reader can
see immediately where this paper improves currently known best bounds.

d k PPSZ Unique PPSZ General BE [2] FM [5] Downsampling+ 2-SAT

3 2 1.434 1.820 1.356 1.5 1.5

4 2 1.849 2.427 1.808 2 2

5 2 2.254 3.033 2.259 2.5 2.5

6 2 2.652 3.640 2.711 2.994 3

10 2 4.208 6.066 4.518 4.529 5

15 2 6.115 9.098 6.777 6.424 7.5

Table 1. Constants c so that the algorithm for (d, 2)-ClSP runs in time cn+o(n)

Asymptotics. We want to gauge the performance of several (d, k)-ClSP algo-
rithms for large d. For this, we define the savings of an algorithm to be the
largest c such that it solves (d, k)-ClSP in time O∗

(
dn

2cn

)
.

Theorem 1.4. For k ≥ 2 and large d the savings of PPSZ for (d, k)-ClSP

converge to log2(e)(1− S2,k), and 1− S2,k = −
∫ 1

0
ln(1− rk−1)dr .

This means the savings for large d are a factor log2(e) ≈ 1.44 larger than the
savings for k-SAT. It should be mentioned that for large d the advantage of PPSZ
over PPZ vanishes, i.e., their savings converge, for each fixed k. We compare the
savings of several algorithms in Table 3.

1.4 Notation

We adapt the notational framework as used in [16]. Let V be a finite set of
variables, each of which takes values in [d] := {1, . . . , d}. A literal over x ∈ V is
of the form (x 6= c) for c ∈ N. A clause over V is a disjunction (OR) of finite
set of literals over pairwise distinct variables from V . A formula F over V is a
conjunction (AND) of clauses over V . It is sometimes convenient to view F as a
set of clauses. By vbl(F) we denote the set of variables appearing in F .

A formula F is a (d, k)-ClSP if the variables can take on d values and every
clause has at most k literals. We also write (d, k)-ClSP to denote the satisfiability
decision problem on (d, k)-ClSP formulas.

A assignment on V is a function α : V → [d]. It satisfies the literal (x 6= c) if
α(x) 6= c; it satisfies a clause if it satisfies at least one literal therein; finally, it
satisfies a formula if it satisfies all its clauses.

A partial assignment α on V is a partial function V → [d]. It is convenient
to view α as a certain (d, 1)-CSP over V : for example (x1 = c1) ∧ (x2 = c2) is

5

d k PPSZ Unique PPSZ General PPZ [12] Downsampling+PPSZ

3 3 1.901 1.901 2.162 1.961

4 3 2.479 2.479 2.729 2.615

5 3 3.049 3.049 3.291 3.268

6 3 3.614 3.640 3.850 3.922

7 3 4.175 4.246 4.407 4.575

8 3 4.733 4.853 4.963 5.229

9 3 5.289 5.459 5.516 5.882

10 3 5.844 6.066 6.069 6.536

11 3 6.397 6.672 6.621 7.189

15 3 8.602 9.098 8.821 9.803

3 4 2.153 2.153 2.351 2.204

4 4 2.823 2.823 3.014 2.938

5 4 3.487 3.487 3.672 3.673

10 4 6.761 6.761 6.935 7.345

15 4 10.006 10.006 10.176 11.018

3 5 2.310 2.310 2.471 2.355

4 5 3.040 3.040 3.195 3.139

5 5 3.764 3.764 3.915 3.924

10 5 7.348 7.348 7.490 7.848

15 5 10.906 10.906 11.045 11.771

Table 2. Constants c so that the algorithm for (d, k)-ClSP runs in time cn+o(n)

the partial assignment that sets x1 to c1 and x2 to c2. Two partial assignments
α, β over V are compatible if they agree whereever they are defined; equivalently,
if α ∧ β, viewed as a (d, 1)-CSP, is satisfiable. If α is a partial assignment on V
then Uα is the set of variables in V on which α is not defined. We denote by
α[x = c] the (partial) assignment that sets x to c and agrees with α elsewhere.

By |= we denote usual logical implication. That is, for two formulas F,G over
a variable set V , the expression F |= G means that every total assignment α
that satisfies F also satisfies G.

By Unique (d, k)-ClSP we denote the promise problem of deciding whether
a (d, k)-ClSP has exactly one or no satisfying assignment.

2 The PPSZ Algorithm

Definition 2.1 (D-implication). Let F be a satisfiable ClSP formula over V ,
α0 a partial assignment, and D ∈ N. We say that (F, α0) D-implies the literal
(x 6= c) and write (F, α0) �D (x 6= c) if there is a subset G of F with |G| ≤ D
such that G ∧ α0 implies (x 6= c).

Whether (F, α0) |=D (x 6= c) holds or not can be checked in time O(|F |D ·
poly(n)). If D is constant this is polynomial. If D is sufficiently slowly growing
this is subexponential.

6

k PPSZ (and PPZ) Downsampling+PPSZ Schöning

general k log2(e)(1− S2,k) 1− S2,k log2

(
k
k−1

)
2 1.44 1 1

3 0.885 0.613 0.585

4 0.642 0.445 0.415

5 0.504 0.349 0.322

k →∞ π2 log2(e)

6k
≈ 2.371

k
π2

6k
≈ 1.644

k

log2(e)

k
≈ 1.44

k

Table 3. The savings of several (d, k)-ClSP algorithms. For PPSZ and PPZ the savings
hold for d→∞. The savings of downsampling+PPSZ and of Schöning do not depend
on d.

Definition 2.2 (Eligible values). Let F be a satisfiable ClSP formula over V ,
α0 a partial assignment, and x ∈ Uα0

(i.e. an unassigned variable). Then

A(x, α0) := {c ∈ [d] | (F, α0) 6�D (x 6= c)} .

That is, A(x, α0) is the set of colors not ruled out by D-implication.

Note that A(x, α0) also depends on F and D. However, F and D will not change
throughout the analysis, so we will assume from now on that they are clear from
the context.

Let us describe PPSZ. Given a ClSP F , it starts with the empty assignment
α0 = ∅ and attempts to incrementally add variables to it, hoping that eventually
α0 becomes a satisfying (total) assignment. To achieve this, PPSZ chooses a
uniformly random permutation π of V and iterates through V in the order
dictated by π. When considering some x ∈ V it computes A(x, α0). If this is
empty then F ∧ α0 is unsatisfiable and PPSZ declares failure. Otherwise, it
chooses some eligible color c ∈ A(x, α0) uniformly at random, adds (x = c) to
α0, and continues. Below we give a pseudo-code for PPSZ. Our pseudo-code is
recursive rather than iterative because this is more convenient for the analysis
of the general (multiple satisfying assignments) case.

Algorithm 1 Top-Level-PPSZ(ClSP formula F)

Choose π u.a.r. from all permutations of V (F).
Let α0 be the empty assignment.
return PPSZ(F , π, α0)

Note that A(x, α0) is the set of values that are “currently eligible for x”.
Now suppose α0 is compatible with some satisfying assignment α, and the next
assignment steps of PPSZ are all according to α. We are actually interested how
A(x, α1) will look where α1 is the “future” partial assignment just before x is
processed. This motivates the following (recursive) definition.

7

Algorithm 2 PPSZ(F , π, α0)

if α0 is a total assignment then
return α0 if it satisfies F , else failure

end if
x← first variable of Uα0 according to π
c←u.a.r. A(x, α0) (return failure if A(x, α0) = ∅).
return PPSZ(F , π, α0 ∧ (x = c))

Definition 2.3 (Ultimately Eligible Values). Let π a permutation of the
variables, α be a satisfying assignment, α0 a partial assignment compatible with
α, and x a variable in Uα0

. Let y be the first variable of Uα0
according to π.

– If y = x set A(x, α0, α, π) := A(x, α0).
– Otherwise, set A(x, α0, α, π) := A(x, α0 ∧ (y = α(y)), α, π).

This definition allows us to write down an explicit formula for the success prob-
ability of PPSZ. We write

p(α0, α) := Pr
π

[PPSZ(F, π, α0) returns α] .

This is the probability that PPSZ returns one particular assignment α. Observe
that PPSZ returns α if and only if it always picks the “correct” value for every
x ∈ Uα0

. For a fixed permutation π this happens with probability 1
|A(x,α0,α,π)| .

Therefore we obtain

p(α0, α) = E
π

 ∏
x∈Uα0

1

|A(x, α0, α, π)

 . (1)

≥ d−
∑
x∈U(α0) Eπ [logd |A(x,α0,α,π)|] . (by Jensen’s Inequality)

A large part of this paper will be devoted to estimating Eπ [logd |A(x, α0, α, π)|].
Note that in general there is no non-trivial upper bound: If F = 1, the constant
1 formula over n variables, then A(x, α0, α, π) = d for all x and π and p(α0, α) =
d−|Uα0 |. In particular this is d−n if we start with the empty assignment α0 = ∅.
In the other extreme, if there is only one possible value of x, we can actually
give a non-trivial upper bound.

Definition 2.4 (Frozen Variables). Let α0 a partial assignment. A variable
x ∈ U(α0) is frozen (in F with respect to α0) if there is a value c ∈ [d] such that
F ∧ α0 |= (x = c).

Here we are talking about “full implication” |=, not D-implication |=D.

Lemma 2.5. Let F be a (d, k)-ClSP formula, α a satisfying assignment, α0 a
partial assignment compatible with α, and x a variable in Uα0

. If x is frozen in
F with respect to α0 then

E
π

[logd |A(x, α0, α, π)|] ≤ Sd,k + εD ,

where εD is an error parameter that goes to 0 as D goes to infinity.

8

This lemma immediately implies Theorem 1.1.

Proof (of Theorem 1.1). Suppose F has exactly one satisfying assignment α. Let
α0 be the empty assignment. Note that every x is frozen in F with respect to
α0.

p(α0, α) ≥ d−
∑
x∈U(α0) Eπ [logd |A(x,α0,α,π)|]

≥ d−n(Sd,k+εD) .

By making D a slowly growing function in n, we can make sure that PPSZ runs
in subexponential time and has success probability O∗

(
d−Sd,kn

)
. Repeating this

procedure O∗
(
dSd,kn

)
times guarantees a constant success probability.

3 Understanding |A(x, α0, α, π)|: Proof of Lemma 2.5

During this whole section we fix a partial assignment α0, a satisfying assignment
α of F that is compatible with α0, and a variable x. Without loss of generality
we let α = (d, . . . , d). Since x is frozen we have F ∧α0 |= (x = d). Similar to [10]
we construct critical clause trees.

3.1 Construction of Critical Clause Trees

Consider a color c ∈ {1, . . . , d− 1}. The critical clause tree Tc has two types of
nodes: clause nodes on even levels (this includes the root, which is on level 0) and
variable nodes on odd levels. A clause node has a clause label clause-label(c) ∈ F
and an assignment label βu; it will always hold that βu is compatible with α0 and
violates clause-label(u); a clause node has at most k−1 children. A variable node
v has a variable label var-label(v) ∈ Uα0

and exactly d−1 children. Furthermore,
each edge e = (v, w) from a variable node v to a clause node w has an edge color
edge-color(e) ∈ [d− 1]. Here is how we construct Tc:

Create a a root vertex and set βroot := α[x = c].
while there is a leaf u without a clause label:

– Choose a clause C unsatisfied by βu.
– Set clause-label(u) := C.
– for all literals (y 6= d) ∈ C:
• Create a new child v of u. Set var-label(v) = y.
• for all i ∈ [d − 1]: Create a new child of w of v and set βw :=
βu[y = i], edge-color(v, w) = i.

Proposition 3.1. (1) The construction of Tc terminates. (2) Suppose u is a
clause node in Tc, C = clause-label(u) and (y 6= i) is a literal in C. If i = d then
u has a child v with var-label(v) = y. If i < d then u has an ancestor v with
var-label(v) = y. (3) If var-label(v) = var-label(v′) then v is not an ancestor
of v′. In other words, the set of variable nodes v with var-label(v) = y is an
anti-chain in Tc.

9

Due to space constraints we will defer the proof of this proposition and of several
lemmas below to the appendix.

(1333)

(x1 6= 1 ∨ x2 6= 3)

x2

(1133) (1233)

x2 = 2x2 =
1

(x1 6= 1 ∨ x2 6= 1)

Step 4. Find a clause violated by
(1133). No children in this case.

(1333)

(x1 6= 1 ∨ x2 6= 3)

x2

Step 2. Find a clause violated
by βu. Add a child for x2 6= 3.

(1333)

(x1 6= 1 ∨ x2 6= 3)

x2

(1133) (1233)

x2 = 2x2 =
1

Step 3. Add (d − 1) clause node
children. Add edge labels.

(1333)

(x1 6= 1 ∨ x2 6= 3)

x2

(1133) (1233)

x2 = 2x2 =
1

(x1 6= 1 ∨ x2 6= 1) (x2 6= 2 ∨ x3 6= 3)

x2

(1213) (1223)

x3 = 2x3 =
1

Step 6. Add (d− 1) clause node children and
edge labels.

(1333)

(x1 6= 1 ∨ x2 6= 3)

x2

(1133) (1233)

x2 = 2x2 =
1

(x1 6= 1 ∨ x2 6= 1) (x2 6= 2 ∨ x3 6= 3)

x2

(1213) (1223)

x3 = 2x3 =
1

(x1 6= 1 ∨ x3 6= 1) (x1 6= 1 ∨ x3 6= 2)

Step 7+8. Find clauses violated by (1213) and
(1223), respectively. No new children here.

Construction of a critical clause tree for d = 3, V = {x1, x2, x3, x4},
α = (3, 3, 3, 3), α0 = ∅, variable x1, color c = 1 and formula

F = (x1 6= 1 ∨ x2 6= 3) ∧ (x1 6= 1 ∨ x2 6= 1) ∧ (x2 6= 2 ∨ x3 6= 3)∧
(x1 6= 1 ∨ x3 6= 1) ∧ (x1 6= 1 ∨ x3 6= 2).

Step 5. Find a clause violated
by (1233). Add a child for (x3 6= 3).

(1333)

(x1 6= 1 ∨ x2 6= 3)

x2

(1133) (1233)

x2 = 2x2 =
1

(x1 6= 1 ∨ x2 6= 1) (x2 6= 2 ∨ x3 6= 3)

x3

(1333)

Step 1. A clause node u with
an unsatisfying assignment βu

10

Definition 3.2. Let Tc be a critical clause tree and π be a permutation. A vari-
able node v is dead if its variable label comes before x in π. It is alive if it is
not dead. All clause nodes are alive, too. A node u is reachable if there is a path
of alive nodes from the root to u. Reachable(Tc, π) is the set of all reachable
vertices. Let G(Tc, π) be the set of clause labels of the nodes in Reachable(Tc, π).

Lemma 3.3 (Critical clause trees model local reasoning). Let π be a
permutation of the variables and c ∈ [d − 1] a color. Let β be the restriction of
α to the variables coming before x in π. Then G(Tc, π) ∧ α0 ∧ β � (x 6= c).

We encourage the reader to verify the lemma for the critical clause tree in the
figure above, for example for π = (x2, x1, x3, x4) or π = (x1, x2, x3, x4).

Corollary 3.4. If |Reachable(Tc, π)| ≤ D then c 6∈ A(x, α0, α, π). In other
words, PPSZ can eliminate color c for x by local reasoning.

Proof (Proof of Lemma 3.3). We show the following equivalent statement: Let γ
be a total assignment that is compatible with α0 ∧ β and γ(x) = c 6= d. Then γ
does not satisfy G(Tc, π). We will prove this statement constructively by finding
a clause that is violated by γ.

Set u to be the root of Tc.
do as long as possible:

– Let C := clause-label(u).
– if there is some (y 6= d) ∈ C with γ(y) = i 6= d:
• Let v be the child of u with var-label(v) = y.
• Let w be the child of v such that edge-color(v, w) = i.
• Set u = w and continue.

– else: return u.

Let u be the vertex returned by this procedure. Consider any variable node v on
the path from the root to u and let y := var-label(v). By construction βu(y) =
γ(y) 6= d. This means that y comes after x in π: Otherwise, γ(y) = α(y) = d
by assumption on γ. So y comes after x, every ancestor v of u is alive, and u is
reachable. Therefore C := clause-label(u) ∈ G(Tc, π).

We claim that γ violates C: First consider a literal (y 6= d) ∈ C. If γ(y) 6= d,
the above procedure would have continued, and not returned u. So γ(y) = d,
and γ does not satisfy (y 6= d). Second consider a literal (z 6= i) ∈ C for some
i 6= d. By Proposition 3.1 z appears as a variable label above u, and therefore
γ(z) = βu(z). Since βu violates C, it violates the literal (z 6= i), thus γ violates
it, too. We conclude that γ violates C. ut

For 1 ≤ c ≤ d−1 we define the indicator variableRc which is 1 if |Reachable(Tc, π)| >
D| and 0 otherwise. By the above corollary we know that Rc = 0 implies
c 6∈ A(x, α0, α, π). Since d ∈ A(x, α0, α, π) for all π we get |A(x, α0, α, π)| ≤
1 +

∑d−1
c=1 Rc. We now have to show that E

[
logd

(
1 +

∑d−1
c=1 Rc

)]
≤ Sd,k + εD.

11

Note that Rc depends on the number of reachable nodes. It is difficult to un-
derstand the worst-case behavior of the random variable

∑
Rc. Let us therefore

define a new ensemble of random variables:

Phc =

{
1 if there exists a reachable vertex at depth h in Tc ,

0 else.

Note that if m := |Reachable| is very large, then there exist a reachable vertex
at depth at least h, where h is logarithmic in m. The precise connection is: Let
h be the largest even integer with 2(h/2)(k−1)(d−1) ≤ D. Then Rc ≤ Phc . So it

suffices to bound E
[
logd

(
1 +

∑d−1
c=1 P

h
c

)]
from above. Note that the behavior

of
∑
Phc depends on (i) the shape of the critical clause trees; (ii) the concrete

arrangement of variable labels in all d − 1 trees. All can be pretty complex.
Luckily, we can prove that in the worst-case, everything looks quite nice.

Lemma 3.5 (Independence Between Trees, Informal). In the worst case,
the trees T1, . . . , Td−1 do not share any variable labels.

This follows from a certain monotonicity argument and the concavity of logd.

Lemma 3.6 (Independence Within a Tree, Informal). In the worst case,
no variable label appears twice within a tree.

A version of this lemma also appears in [10]. It follows from the FKG inequal-
ity [6] and the fact that Phc is monotone in each of the events “y comes after x
in π”. At this point we can forget all about variable and clause labels. Instead of
thinking of π as a permutation on Uα0

, we think of it as assigning each variable
x a random value π(x) ∈ [0, 1]. With probability 1 this defines a permutation.
Thus the ensemble (Ph1 , . . . , P

h
d−1) can be produced by the following random

experiment: Select p ∈ [0, 1] uniformly at random (this corresponds to choos-
ing π(x)). Then delete each odd-level node with probability p, independently (if
π(v) < π(x) then the node labeled v is dead). Now Phc = 1 if and only if after
deletion, Tc contains a path of length h starting at its root.

Observation 3.7 (Deletion in Infinite Trees, Informal) In the worst case,
all Tc are infinite trees in which an even-level node has exactly k − 1 children
and an odd-level node exactly d− 1.

This “worst case” of infinite trees can of course not happen for an actual ClSP
instance F . However, it is useful to imagine infinite trees in the analysis. Let
us assume the trees T1, . . . , Td−1 look as in the worst case outlined above, and

write Y h :=
∑d−1
c=1 P

h
c . The distribution of Y h does not depend on F , only on

h, d, and k. We define Pc to 1 if Tc has an infinite path of alive vertices and set
Y :=

∑d−1
c=1 Yc.

Lemma 3.8. E[logd(1 + Y h)] converges to E[logd(1 + Y)] = Sd,k as h→∞.

Equivalently, E[logd(1 + Y h)] = Sd,k + εD for some εD that converges to 0 as D
grows. To sum up,

E
π

[logd |A(x, α0, α, π)|] ≤ E
[
logd

(
1 + Y h)

)]
= Sd,k + εD .

12

4 General (d, k)-ClSP

The intuition behind the analysis of the general case is: Our partial assignment
α0 represents the current state of PPSZ (i.e. the variable assignments it has
already made). If a variable x is frozen at this point in time (cf. Definition 2.4),
then Lemma 2.5 gives us an upper bound on E[|A(x, α0, α, π)|]. Otherwise, if x
is not frozen, we have at least a 2/d chance of guessing a value for x that keeps
F satisfiable.

Below we will carefully track how E[logd |A(x, α0, α, π)|] changes over time af-
ter x becomes frozen. Surprisingly we only use one property of our D-implication
mechanism: adding more information to α0 can only decrease the number of el-
igible colors:

Let y 6= x and c := α(y). Then A(x, α0 ∧ y = c) ⊆ A(x, α0).

4.1 Definitions and Notation

Through most of the analysis, we consider a certain “snapshot” of PPSZ. At
this point in time it has already assigned some variables, and we represent this
by the partial assignment α0.

Definition 4.1. Let F be a (d, k)-ClSP formula and α0 a partial assignment.
Let x ∈ U(α0).

– A(x, α0) is the set of eligible values as in Definition 2.2.
– Sα0(x) is the set of values c ∈ [d] such that F ∧ α0 ∧ (x = c) is satisfiable.
– Sα0 := {(x, c) ∈ U(α0)× [d]

∣∣c ∈ Sα0(x)}.
Note that a variable x is frozen if and only if |Sα0

(x)| = 1. Also, Sα0
(x) ⊆

A(α0, x). We partition the set U(α0) of yet unassigned variables into the parts:
U(α0) = Vfo(α0) ∪̇Vfr(α0) ∪̇Vnf(α0) where

– Vnf(α0) := {x ∈ U(α0) | |Sα0
(x)| ≥ 2}, i.e., the set of non-frozen variables.

– Vfo(α0) := {x ∈ U(α0) | |A(α0, x)| = 1}, i.e., those variables for which the
D-implication mechanism of PPSZ can rule out all but one value. Clearly,
such a variable is also frozen. We call such a variable forced.

– Vfr(α0) := the set of frozen variables not in Vfo(α0).

Lemma 2.5 guarantees that Eπ[logd |A(x, α0, α, π)|] ≤ Sd,k + εD whenever x

is frozen. We write S := Sd,k + εD and G := max{S, 1 − logd e
2 }. As in [7] we

define a cost function:

Definition 4.2. Let α0 be a partial and α a total assignment and x a variable.
We define cost(α0, α, x) as follows:

– If x 6∈ U(α0) or α0, α are incompatible or α violates F , or x is forced with
respect to α0 then cost(α0, α, x) = 0;

– else if x ∈ Vnf(α0) then cost(α0, α, x) = G;
– else (if x ∈ Vfr(α0)) then cost(α0, α, x) = Eπ[logd(|A(x, α0, α, π)|)].

We define cost(α0, α) =
∑
x∈U(α0)

cost(α0, α, x).

Note that cost(α0, α) ≤ G · n(α0) by Lemma 2.5.

13

4.2 A distribution over satisfying assignments

Let α0 be a partial assignment such that F ∧ α0 is satisfiable. We define a (not
computationally efficient) process that samples a random satisfying assignment:

while U(α0) 6= ∅:
– Pick (x, c) ∈ Sα0 .
– Add (x = c) to α0.

return α0.

Note that this process always outputs a total satisfiable assignment compatible
with (the original) α0. Let Q(α0, α) be the probability that this process, started
with α0, outputs α. This defines a probability distribution over the set of satis-
fying assignments of F . Let p(α0, α) denote the probability that PPSZ(F , α0)
returns α .

Lemma 4.3. Let α be a satisfying assignment, α0 be a partial assignment com-
patible with α. Then p(α0, α) ≥ Q(α0, α) · d− cost(α0,α).

Proof (of Theorem 1.2). Let α0 be the empty assignment. Then

Pr[PPSZ(F, α0) succeeds] =
∑

α∈sat(F)

p(α0, α)

≥
∑

α∈satV (F)

Q(α0, α) · d− cost(α0,α) ≥
∑

α∈satV (F)

Q(α0, α) · d−Gn = d−Gn .

ut

The rest of this section is devoted to proving Lemma 4.3. We prove p(α0, α) ≥
Q(α0, α) · d− cost(α0,α) by induction over |U(α0)|, the number of variables unas-
signed in α0. If α0 is total the statement holds trivially.

For the induction step suppose α0 is not total. PPSZ randomly picks x ∈
U(α0) and c ∈ |A(x, α0)|, adds (x = c) to α0 and continues. For the rest of
this inductive proof, the meaning of α and α0 will not change. We thus drop
the α0 from Sα0 ,Sα0(x),A(x, α0),Uα0 ,Vnf(α0), We also write S,S(x),A(x)
and write s := |S|, s(x) := |S(x)|, a(x) := |A(x)|. Finally, since PPSZ adds
(x = c) to α0, we have to look at partial assignments that extend α0 by one
variable. For this we write αx=c0 := α0 ∧ (x = c). Most of the time we consider
partial assignments that fix one additional variable x to α(x). We denote this

by αx0 := α
x=α(x)
0 .

Given the current partial assignment α0, PPSZ randomly picks some x ∈ U
and c ∈ A(x) and continues with αx=c0 . Thus

p(α0, α) = E
x∈U

[
E

c∈A(x)
[p(αx=c0 , α)]

]
= E
x∈U

[
1

a(x)
· p(αx=α(x)0 , α)

]
,

14

The second equality holds since p(αx=c0 , α) = 0 for c 6= α(x). Applying the

induction hypothesis to α
x=α(x)
0 (or ax0 , for short):

p(α0, α) ≥ E
x∈U

[
Q(αx0 , α)d− cost(αx0 ,α)

a(x)

]
We could apply Jensen’s inequality to the above expectation. However, the

argument of E above includes Q, which is not necessarily very concentrated
around its expectation, and Jensen’s inequality not seem to yield any usable
bound. To circumvent this problem, we introduce a new probability distribution
ξ(x) over U(α0) that is proportional to Q(αx0 , α). Note that

Q(α0, α) = E
(x,c)∈S

Q(αx=c0 , α) =
1

s

∑
x∈U

∑
c∈S(x)

Q(αx=c0 , α) =
1

s

∑
x∈U

Q(αx0 , α) ,

and therefore ξ(x) :=
Q(αx0 ,α)
s·Q(α0,α)

is a probability distribution over U . Thus,

p(α0, α) ≥ E
x∈U

[
1

a(x)
·Q(αx0 , α) · 2− cost(αx0 ,α)

]
=
s ·Q(α0, α)

|U| E
x∼ξ

[
2− cost(αx0 ,α)

a(x)

]
≥ s ·Q(α0, α)

|U| 2Ex∼ξ[− cost(αx0 ,α)−logd a(x)] . (by Jensen’s)

In order for our inductive prove to go through, the last expression should be at
least Q(α0, α) · 2− cost(α0,α). This happens if and only if

s

|U| · 2
Ex∼ξ[− cost(αx0 ,α)−logd a(x)] ≥ 2− cost(α0,α) ⇐⇒

logd
s

|U| − E
x∼ξ

[cost(αx0 , α) + logd a(x)] ≥ − cost(α0, α)⇐⇒

E
x∼ξ

[cost(α0, α)− cost(αx0 , α)]− E
x∼x

[logd a(x)] + logd
s

|U| ≥ 0 . (2)

We defer the (quite demanding) proofs of the next three lemmas to the appendix.

Lemma 4.4. Ex∼ξ[cost(α0, α)−cost(αx0 , α)] ≥ 1
s

(
G
∑
y∈Vnf

s(y) +
∑
y∈Vfr

logd a(y)
)

.

Lemma 4.5. Ex∼ξ[logd a(x)] ≤
∑
x∈U logd a(x)

s +
∑
x∈Vnf

(s(x)−1)
s .

Lemma 4.6. logd
s
|U| ≥ logd(e)

∑
y∈Vnf

(s(y)−1)
s .

Let (∗) denote the left-hand side of inequality (2).

s · (∗) ≥ G
∑
y∈Vnf

s(y) +
∑
y∈Vfr

logd a(y)−
∑
x∈U

logd a(x)−
∑
x∈Vnf

(s(x)− 1) + logd(e)
∑
y∈Vnf

(s(y)− 1)

=
∑
y∈Vnf

(Gs(y)− s(y) + 1 + logd(e)(s(y)− 1))−
∑
y∈U

logd a(y)(1− Iy∈Vfr
) .

15

Note that logd a(y)(1− Iy∈Vfr
) is equal to 0 if y ∈ Vfr ∪Vfo and at most 1 if y ∈

Vnf . Thus it suffices to show that
∑
y∈Vnf

(Gs(y)− s(y) + logd(e)(s(y)− 1)) ≥ 0.
We will show that every summand is non-negative for each y ∈ Vnf :

Gs(y)s(y) + logd(e)(s(y)− 1 ≥ 0 ⇔ G ≥ 1− logd(e) ·
s(y)− 1

s(y)
.

The last inequality holds because s(y)−1
s(y) ≥ 1/2 for y ∈ Vnf and G ≥ 1− logd(e)

2

by definition. This finishes the proof.

5 Conclusion and Open Problems

We have shown how to apply the PPSZ algorithm to (d, k)-ClSPs. In the unique
case we established correlation inequalities showing that PPSZ behaves as ex-
pected. This improves the fastest known running time for Unique (d, k)-ClSP
algorithm for almost all values (d, k). These results transfer to the general case
for k ≥ 4.

In our analysis of the general case we only distinguish frozen and non-frozen
variables. That is, for non-frozen variables we make no difference between vari-
ables with two, three, or even d viable values. A more fine-grained analysis could
give an improved result for the general case. However we do not know how to
analyze the transition between different types of “non-frozen-ness”.

We conjecture that the running time in the general case is no worse than in
the unique case and that the current discrepancy for k = 2, 3 is a shortcoming
of our analysis, not the algorithm.

References

1. E. Allender, S. Chen, T. Lou, P. A. Papakonstantinou, and B. Tang. Width pa-
rameterized SAT: time-space tradeoffs. Theory of Computing, (to appear).

2. R. Beigel and D. Eppstein. 3-coloring in timeO(1.3289n). J. Algorithms, 54(2):168–
204, 2005.

3. A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press, February 2009.

4. A. Björklund and T. Husfeldt. Inclusion–exclusion algorithms for counting set
partitions. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
575–582. IEEE Computer Society, 2006.

5. T. Feder and R. Motwani. Worst-case time bounds for coloring and satisfiability
problems. J. Algorithms, 45(2):192–201, 2002.

6. C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. Correlation inequalities on some
partially ordered sets. Comm. Math. Phys., 22:89–103, 1971.

7. T. Hertli. 3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in
General. SIAM J. Comput., 43(2):718–729, 2014.

16

8. R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity. J. Comput. System Sci., 63(4):512–530, 2001. Special issue on FOCS
98 (Palo Alto, CA).

9. L. Li, X. Li, T. Liu, and K. Xu. From k-sat to k-csp: Two generalized algorithms.
CoRR, abs/0801.3147, 2008.

10. R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time
algorithm for k-SAT. J. ACM, 52(3):337–364 (electronic), 2005.

11. R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. Chicago J. Theoret.
Comput. Sci., pages Article 11, 19 pp. (electronic), 1999.

12. D. Scheder. Ppz for more than two truth values - an algorithm for constraint
satisfaction problems. CoRR, abs/1010.5717, 2010.

13. U. Schöning. A probabilistic algorithm for k-sat and constraint satisfaction prob-
lems. In 40th Annual Symposium on Foundations of Computer Science, FOCS
’99, 17-18 October, 1999, New York, NY, USA, pages 410–414. IEEE Computer
Society, 1999.

14. S. Szeider. On fixed-parameter tractable parameterizations of SAT. In
E. Giunchiglia and A. Tacchella, editors, Theory and Applications of Satisfiability
Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy,
May 5-8, 2003 Selected Revised Papers, volume 2919 of Lecture Notes in Computer
Science, pages 188–202. Springer, 2003.

15. P. Traxler. The time complexity of constraint satisfaction. In M. Grohe and
R. Niedermeier, editors, Parameterized and Exact Computation, Third Interna-
tional Workshop, IWPEC 2008, Victoria, Canada, May 14-16, 2008. Proceedings,
volume 5018 of Lecture Notes in Computer Science, pages 190–201. Springer, 2008.

16. E. Welzl. Boolean Satisfiability – Combinatorics and Algorithms (Lecture Notes),
2005. www.inf.ethz.ch/~emo/SmallPieces/SAT.ps.

17

A Analysis of Critical Clause Trees

Let us briefly review the setup of Section 3. Our goal is to prove Lemma 2.5,
stating that E[logd(|A(x, α0, α, π)|)] ≤ Sd,k + εD for some εD that converges to
0 as D grows. Towards a proof we defined a collection of critical clause trees
T1, . . . , Td−1. Such a tree has clause nodes on even levels (which includes the
root) and variable nodes on odd levels. Every variable node v has a variable
label var-label(v). We first prove some facts about critical clause trees:

Proposition 3.1, restated. (1) The construction of Tc terminates. (2) Sup-
pose u is a clause node in Tc, C = clause-label(u) and (y 6= i) is a literal in C.
If i = d then u has a child v with var-label(v) = y. If i < d then u has an ances-
tor v with var-label(v) = y. (3) If var-label(v) = var-label(v′) then v is not an
ancestor of v′. In other words, the set of variable nodes v with var-label(v) = y
is an anti-chain in Tc.

Proof. We start by showing that the process is well-defined. Every assignment
label βu occurring in the tree has βu(x) 6= d—indeed, we never modify β by
changing a value back to d. Thus, βu violates F and we can always find a clause
label for a clause node. Next let us show (2). Suppose u is a clause node. If
(z 6= d) is a literal in C := clause-label(u) then by construction, u will get a
child v with var-label(v) = z. Now suppose y 6= i is a literal in C. Since β
violates C it follows that βu(y) = i. It is clear from the construction that βu
is changed bit by bit when adding a new clause node and that there is some
variable node v with var-label(v) = y that is an ancestor of u. This shows (2).
Furthermore, once βu(y) = i < d, this also implies βw(y) = i for all clause nodes
w that are descendants of u (since the process never changes a value back to
d). Thus we see that clause-label(w) does not contain the literal (y 6= d). This
in turn means no variable node v in the subtree of u has var-label(v) = y. We
therefore see that the variable nodes along a descending path in Tc have distinct
variable labels. Thus it contains at most |V | variable nodes, which shows (1),
that the process terminates. Also it means that the variable nodes v in Tc with
var-label(v) = y form an antichain, which shows (3). ut

A.1 Analyzing Critical Clause Trees

For an integer h we define the following random variables Rh1 , . . . , R
h
d−1: For a

(uniformly random) permutation π of the variables, call a variable node v dead
if var-label(v) comes before x in π. Otherwise, call it alive. All clause nodes
are alive, too. Let Rhc be 1 if Tc contains a path of length h which starts at
the root and contains only alive vertices. For h being the largest even integer
with 2(h/2)(k−1)(d−1) ≤ D we have shown in Section 3 that |A(x, α0, α, π)| ≤
1 +

∑d−1
c=1 P

h
c and to proof of Lemma 2.5 we have to prove an upper bound on

E[logd(1 +
∑d−1
c=1 P

h
c)]. In this section we will do this formally.

18

A.2 An Alternative View of Permutations

Instead of viewing π as a uniformly random permutation of the variables V of F ,
we think of it as a uniformly random function V → [0, 1]. With probability one
this defines a permutation on V . It has a clear advantage: when we condition on
[π(x) = p] the events [π(u) < π(x)] for u ∈ V become independent.

Lemma 3.5 [Independence Between Trees], restated.
Informal Statement: In the worst case, the trees T1, . . . , Td−1 do not share
any variable labels.

Formal Statement: Define P̃h1 , . . . , P̃
h
d−1 as follows: Sample p ∈ [0, 1] ran-

domly, and then set each P̃hc independently to 1 with probability Pr[Phc = 1 | π(x) =
p]. Then

E

[
logd

(
1 +

d−1∑
c=1

Phc

)]
≤ E

[
logd

(
1 +

d−1∑
c=1

P̃hc

)]
.

Proof. We prove that the lemma still holds when we condition on π(x) = p for
every p ∈ [0, 1]. Let L ⊆ V be the set of variable labels occurring in the trees
T1, . . . , T(d−1). The expressions [π(y) ≥ π(x)] for y ∈ L are now independent

binary random variables with expectation 1 − p each. Recall that Phc is the
indicator variable that there is a path of length h that starts at the root at
contains only alive nodes. This is a monotone boolean function in the boolean
variables [π(y) ≥ p]. The lemma will follow from the following more general
lemma.

Lemma A.1 (Concave Correlation Lemma). Let f1, . . . , fk : {0, 1}n → R+
0

be monotone boolean functions. Let X ∼ {0, 1}n be sampled by setting each
coordinate to 1 with some probability q. Let X1, . . . , Xk be independent copies of
X (that is, each Xi has the same distribution as X, but all Xi are independent).
Then

E[g(f1(X) + · · ·+ fk(X))] ≤ E[g(f1(X1) + · · ·+ fk(Xk))] ,

for every concave function g : R+
0 → R.

Proof. Write X = Y Z where Y ∈ {0, 1}n−1 and Z = {0, 1}. We first show that
we can “make the last bit” independent, i.e.,

E[g(f1(X) + · · ·+ fk(X))] ≤ E[g(f1(Y Z1) + · · ·+ fk(Y Zk))] , (3)

where Z1, . . . , Zk are independent binary random variables with expectation q
each. The statement of the lemma will then follow by fixing a choice of each Zi
and then applying (3) to the second-last bit, and so on (note fixing the last bit
to some value gives rise to certain functions f ′1, . . . , f

′
k : {0, 1}n−1 → R+

0 , which
are again monotone).

19

So we only have to prove (3). Fix a choice for Y ∈ {0, 1}n−1. This makes
fi(Y,Z) a monotone one-bit function, which is either 0, 1, or Z. To ease notation
we assume that f1(Y,Z) = · · · = f`(Y,Z) = Z, followed by a indices i for which
fi(Y,Z) = 1, followed by k − `− a ones that are 0. Thus it suffices to show

E[g(`Z + a)] ≤ E[g(Z1 + · · ·+ Z` + a)] (4)

Let h(x) := g(x + a). This is concave, too. Note that Z and Z1 have the same
distribution. Therefore,

E[g(`Z + a)] = E[h(`Z)] = E[h(`Z1)]

= E [E[h(`Z1)|Z1 + · · ·+ Z`]]

≤ E [h(E[`Z1|Z1 + · · ·+ Z`])] (by Jensen’s Inequality)

= E

[
h

(
` · Z1 + · · ·+ Z`

`

)]
(by symmetry)

= E[h(Z1 + · · ·+ Z`)] .

This finishes the proof. ut

We now apply the concave correlation lemma with n = |L|, fc = Phc , and
g(t) = logd(1 + t). This finishes the proof of Lemma 3.5. ut

Next we have to prove that in the worst case, no label appears twice in a tree

T
(c)
x . That is, E[Rc] is maximized if all variable labels of Tc are distinct. Paturi,

Pudlák, Saks, and Zane [10] do this using the FKG inequality [6]. Sure enough,
this works here, too, but notation becomes a mess. It is actually easier to do it
“by hand”.

Lemma 3.6 [Independence Within a Tree], restated.
Informal Statement: In the worst case, no variable label appears twice within
a tree.

Formal Statement: Let T̂ be a tree that looks exactly like T (c) but in which
all variable labels are distinct. Let P̂hc be the event that is defined analogously to
Phc but referring to T̂c instead of Tc. Then Pr[Phc = 1] ≤ Pr[P̂hc = 1].

Proof. We show that the statement is true conditioned on π(x) = p for any
p ∈ [0, 1]. L be the set of variable labels in Tc. Note that x does not occur as
a variable label in Tc. Our indicator variable Phc is in fact a monotone boolean
function in the variables [π(y) ≥ p], y ∈ L. Each of those Boolean variables is 1
with probability 1 − p. To ease notation we will write P instead of Phc (within
this proof, c and h are anyway fixed).

Let y ∈ L be a label that occurs several times in T . Let v be some variable
node of T with var-label(v) = y. We create a new variable y′ 6∈ L and construct
a new tree T ′ that looks like T , but we label v with y′ instead of y. Let P ′ denote
the analog of P for this tree T ′. We want to show that E[P] ≤ E[P ′]. Once we

20

have shown this, we can iteratively replace non-unique labels by new labels, in
the end arriving at some tree T ′′ in which every odd-level vertex has a unique
label. Then we will be done.

We will in fact show that E[P] ≤ E[P ′] holds even conditioned on some
choice for π(z) ∈ [0, 1] for every z ∈ L \ {y}. Under this restriction, P becomes
a monotone function in [π(y) ≥ p], and P ′ becomes a monotone function in
[π(y) ≥ p] and [π(y′) ≥ p]. There are several cases:

1. P ′ becomes constant (0 or 1). Then the restriction reduces P to the same
constant, and we are done.

2. P ′ becomes [π(y) ≥ p] or becomes [π(y′) ≥ p]. Since y′ labels a vertex labeled
y in T , P reduces to [π(y) ≥ p] and we are done as well.

3. P ′ becomes [π(y) ≥ p]∨ [π(y′) ≥ p]. Then P becomes [π(y) ≥ p] and E[P] =
p ≤ 2p− p2 = E[P ′].

4. P ′ becomes [π(y) ≥ p] ∧ [π(y′) ≥ p].

We claim that Case 4 is impossible: Indeed, fixing π(z) for all z ∈ L\{y} decides
which vertices of T ′ are dead or alive, except those labeled y or y′. However, since
the set of vertices labeled y or y′ in T ′ are those labeled y in T , they form an
antichain in T (and thus in T ′, too). Therefore, the existence of an alive path of
length h in T ′ is a disjunction of (zero, one, or two) the literals [π(y) ≥ p] and
[π(y′) ≥ p], never a conjunction. This finishes the proof. ut

With Lemma 3.5 and Lemma 3.6 we can now assume that all variable labels
in T1, . . . , Td−1 are distinct. Recall that in Tc every clause-level vertex has at
most k−1 children, and every odd-level vertex has at most d−1 children. Obvi-
ously, in the worst case Tc every even-level vertex has exactly k− 1 children (up
to level h, after which it does not matter). This motivates the following random
experiment:

Let T1, . . . , Td−1 be infinite trees in which every even-level vertex has degree
k − 1 and every odd-level vertex has degree d − 1. Sample p ∈ [0, 1] randomly
and delete every odd-level vertex with probability p, independently. Let T ′c be
the component of containing the root after deletion. We define random variables
Y hc as follows: If T ′c contains a vertex on level h (after deletion), set Y hc = 1,
otherwise Y hc = 0. The last few paragraphs can now be summarized in the
following lemma:

Lemma A.2 (Deletion in Infinite Trees).

E

[
logd

(
1 +

d−1∑
c=1

Rc

)]
≤ E

[
logd

(
1 +

d−1∑
c=1

Y hc

)]
. (5)

We are now in a much more comfortable situation since the distribution of
(Y h1 , . . . , Y

h
d−1) is independent of the input formula F . Note that for each c it

holds that 1 ≥ Y hc ≥ Y h+1
c ≥ 0 and therefore Yc := limh→∞ Y hc exists. A moment

21

of thought shows that Yc = 1 if and only if after deletion, Tc has arbitrarily long
paths (equivalently, an infinite path) starting at the root. Let Eh be the event
(Y h1 , . . . , Y

h
d−1) 6= (Y1, . . . , Yh). That is, after deletion some tree contains a path

of length h starting at the root, but does not contain an infinite such path. By
a union bound we have, for any c ∈ [d− 1]:

Pr[Eh] ≤ d · Pr[Y hc = 1 ∧ Yc = 0] = d(Pr[Y hc = 1]− Pr[Yc = 1] .

By the Monotone Convergence Theorem, limh→∞ Pr[Y hc = 1] = Pr[Yc = 1] and
therefore Pr[Eh]→ 0]. To summarize:

E [logd |A(x, α0, α, π)|] ≤ E

[
logd

(
1 +

d−1∑
c=1

Rc

)]

≤ E

[
logd

(
1 +

d−1∑
c=1

Y hc

)]

≤ E

[
logd

(
1 +

d−1∑
c=1

Yc

)]
+ Pr[Eh]

= Sd,k + Pr[Eh] .

The last inequality holds because even when E holds, logd

(
1 +

∑d−1
c=1 Y

h
c

)
is at

least 0 and logd

(
1 +

∑d−1
c=1 Yc

)
is at most 1. The last equality holds because the

random variables Y1, . . . , Yd−1 are exactly as in the definition of Sd,k. Since h
increases as D does, we can set εD := Pr[Eh], which goes to 0 as D grows. This
finishes the proof of Lemma 2.5.

22

B Computing Sd,k

We have proved Theorem 1.1, which states that PPSZ finds a unique satisfying
assignment with probability O∗

(
d−Sd,k·n

)
. In this section we will show how to

compute Sd,k. Let us start by repeating the definition of Sd,k.

Let Td,k be the infinite tree in which every even-level vertex has k−1 children
and every odd-degree vertex has d − 1 children. Sample p ∈ [0, 1] uniformly
at random and delete every odd-level vertex with probability p. Let Y be the
indicator variable for the “survival”, i.e., Y = 1 iff the component containing the
root is infinite. Now, for p ∈ [0, 1] uniformly at random, perform this random
experiment d−1 times independently, and let Y1, . . . , Yd−1 be the corresponding
“survival indicator variables”. Then

Sd,k := E [logd (1 + Y1 + · · ·+ Yd−1)] .

When we condition on some specific value for p, the Yi become independent
binary random variables with probability yp each.

Sd,k =

∫ 1

0

E [logd (1 + Y1 + · · ·+ Yd−1)| p] dp

=

∫ 1

0

d−1∑
j=1

logd(1 + j) Pr[Y1 + · · ·+ Yd−1 = j | p]dp

=

∫ 1

0

d−1∑
j=1

logd(1 + j)

(
d− 1

j

)
yjp(1− yp)d−1−jdp

=

d−1∑
j=1

logd(1 + j)

(
d− 1

j

)∫ 1

0

yjp(1− yp)d−1−jdp (6)

B.1 Computing yp

It remains to compute yp, the probability of the survival event. Most of this
standard Galton-Watson branching process theory. In fact, it will be easier to
compute zp := 1− yp, the probability, conditioned on p, that the component of
the root is finite after deletion. Note that Td,k has the following simple recursive
structure:

k − 1

d− 1 d− 1

root

u1 uk−1

Td,k Td,k Td,k Td,k

Td,k :=

23

Let us say “extinction happens” if the component of the root is finite after
deletion. For extinction to happen, the following must happen at every child vi
of the root: (1) the vertex vi is deleted, or (2) extinction happens in each of the
d− 1 subtrees rooted at the children of vi. Conditioned on p, the event (1) has
probability p, and (2) has probability zd−1p . Thus, we get an equation for zp:

zp =
(
p+ (1− p)zd−1p

)k−1
. (7)

Lemma B.1. The extinction probability zp is the smallest solution in [0, 1] of
equation (7). Furthermore, zp = 1 if and only if p ≥ 1− 1

(d−1)(k−1) .

Proof. Let f(z) =
(
p+ (1− p)zd−1

)k−1
. Clearly, zp is a solution of f(z) = z.

How many solutions does f(z) = z have? Note that f(0) = pk−1, f(1) = 1, and
f is convex. Thus it has at least one and at most two solutions in [0, 1]:

Two roots for d = 3, k = 5, p = 0.8 One root for d = 3, k = 5, p = 0.8

We see that z = 1 is the unique root of f(z) = z in [0, 1] if and only if f ′(1) ≤ 1.
Let us compute

f ′(z) = (k − 1)
(
p+ (1− p)zd−1

)k−2
(1− p)(d− 1)zd−2

f ′(1) = (k − 1)(1− p)(d− 1) .

So f ′(1) ≤ 1 if and only if p ≥ 1− 1
(d−1)(k−1) .

It remains to show that if p < 1 − 1
(d−1)(k−1) and thus f(z) = z has some

root z∗ < 1, then actually zp = z∗ and not zp = 1. Recall that Y (h) is the
indicator variable which is 1 if after deletion, the component of T containing

the root contains a vertex at level h. Let y
(h)
p := Pr[Y (h)|p], Z(h) := 1 − Y (h)

and z
(h)
p := 1− y(h)p . Since the root is on level 0 and never gets deleted, we have

z0p = 0. As we have seen above, z
(h)
p → zp, and obviously z

(h)
p is increasing in h.

Let us derive a recurrence for the z
(h)
p . Note that Zh holds iff the following holds

24

for all children v of the root: (1) v is deleted, or (2) after deletion, each child w
of v is the root of a subtree of height at most h− 2. Observe that (1) holds with

probability p and (2) with probability
(
zh−2p

)d−1
. Thus,

z(h)p =

(
p+ (1− p)

(
z(h−2)p

)d−1)k−1
= f

(
z(h−2)p

)
.

Thus we obtain zp = limh→infty z
(h)
p as the limit of the fixed point iteration of

f , starting at 0. From the pictures above it should be clear that this converges
to the smallest root.

Formally, let z∗ < 1 be a root of f(z) = z, which exists and is unique if

p < 1− 1
(k−1)(d−1) . We now prove by induction that z

(h)
p ≤ z∗ for all even h. It

is true for h = 0. Let us assume that z
(h)
p ≤ z∗. Since f(z) is increasing in z, we

have z
(h+2)
p = f

(
z(h)

)
≤ f(z∗) = z∗.

B.2 Making Sd,k More Explicit

The reader who is happy with solving equation (7) numerically and then numer-
ically integrating (6) to obtain Sd,k may well skip the remainder of the section.
Otherwise, he or she might want to continue as we outline how to compute Sd,k
somewhat more explicitly.

Note that we are given zp implicitly, as the solution of a polynomial equation.
This cannot be solved explicitly in general. However, we can compute the inverse
function, namely ρ(z): For given z ∈ [0, 1), ρ(z) is the (unique) value p for
which (7) holds. We can continuously extend ρ at point 1 by defining ρ(1) :=
1 − 1

(d−1)(k−1) . So ρ is continuous differentiable and monotone on [0, 1]. We

obtain:

ρ(z) =
k−1
√
z − zd−1

1− zd−1 .

We abbreviate m = (k − 1)(d − 1) and define hj : [0, 1] → [0, 1] by hj(t) =
td−1−j(1− t)j . We can now succinctly re-write (6):

Sd,k =

d−1∑
j=1

logd(1 + j)

(
d− 1

j

)∫ 1

0

yjp(1− yp)d−1−jdp

=

d−1∑
j=1

logd(1 + j)

(
d− 1

j

)∫ 1

0

(1− zp)jzd−1−jp dp

=

d−1∑
j=1

logd(1 + j)

(
d− 1

j

)∫ 1

0

hj(zp)dp

=

d−1∑
j=1

logd(1 + j)

(
d− 1

j

)∫ 1−1/m

0

hj(zp)dp .

25

The last line requires some justification: If p ≥ 1 − 1/m, then zp = 1 and thus
hj(zp) = 0, thus values of p greater than 1 − 1/m contribute nothing to our

expectation. We want to calculate the integral
∫ 1−1/m
0

hj(zp)dp. Let us define
ζ(p) := zp to emphasize that we are talking about a function on the interval
[0, 1− 1/m]. We do not have an explicit formula for the integrand hj(ζ(p)), but
we know the inverse function of ζ, namely ρ(z). Thus we can apply the following
substitution rule from calculus:

Lemma B.2. Let I be a closed interval and f : I → R be a continuous function
and Φ : [a, b]→ R a continuous differentiable function with φ([a, b]) ⊆ I. Then∫ φ(b)

φ(a)

f(x)dx =

∫ b

a

f(φ(t))φ′(t)dt .

We write ζ(p) := zp, f(p) = hj(ζ(p)), and φ(z) = ρ(z). Then f is continuous on
I = [0, 1 − 1/m] and ρ is continuous differentiable (and monotone) on [a, b] =
[0, 1]. Note that φ([0, 1]) = [φ(0), φ(1)] = [0, 1 − 1/m] = I, so all conditions of
the lemma are satisfied. Therefore∫ 1−1/m

0

hj(ζ(p))dp =

∫ φ(b)

φ(a)

f(p)dx

=

∫ b

a

f(φ(z))φ′(z)dz

=

∫ 1

0

hj(ζ(ρ(z)))φ′(z)dz

=

∫ 1

0

hj(z)φ
′(z)dz .

Note that now we have an explicit formula for the integrand hj(z)φ
′(z). To

simplify notation, we write ∆ = d− 1 and κ := 1
k−1 . We evaluate the integrand:

hj(z)φ
′(z) = zd−1−j(1− z)j

(
k−1
√
z − zd−1

1− zd−1
)′

= z∆−j(1− z)j · z
κ+∆(∆− κ) + κzκ −∆z∆

z (1− z∆)
2

Putting everything together we obtain

Sd,k =

d−1∑
j=1

logd(1 + j)

(
d− 1

j

)∫ 1−1/m

0

hj(zp)dp

=

∆∑
j=1

log∆+1(1 + j)

(
∆

j

)∫ 1

0

z∆−j(1− z)j · z
κ+∆(∆− κ) + κzκ −∆z∆

z (1− z∆)
2 dz

Although we still cannot give an elementary expression for the integral (not to
speak of the sum), this is now explicit enough to be numerically calculated with

26

the help of a mathematics toolbox program, like maple or sagemath. We include
the sage code for computing Sd,k:

% begin sagecode

def compute_S_DeltaKappa(Delta, kappa):

total = 0

j = 1

while (j <= Delta):

term1 = log(1 + j) / log(Delta + 1) * binomial(Delta, j)

def helper(z):

return z^(Delta-j)*(1-z)^j * (z^(kappa+Delta) * (Delta - kappa) +

kappa * z^kappa - Delta * z^Delta) / (z * (1-z^Delta)^2)

term2 = numerical_integral(helper, 0, 1)[0]

total = total + term1 * term2

j = j+1

return total

def compute_S(d,k):

return compute_S_DeltaKappa(d-1, 1 / (k-1)).n(30)

def compute_basis(d,k):

return (d^compute_S(d,k)).n(30)

% end sagecode

27

C Remaining Proofs for General (d, k)-ClSP

In case F has multiple satisfying assignments, we want to prove that the success
probability of PPSZ is at least d−Gd,k . In Section 4 we reduced this task to the
one of showing the following inequality (2):

E
x∼ξ

[cost(α0, α)− cost(αx0 , α)]− E
x∼ξ

[logd a(x)] + logd
s

|U| ≥ 0 . (8)

For definitions of cost, Q, ξ, a(x) and so on please refer to Section 4. In this
section we will prove Lemmas 4.4, 4.5, and 4.6, which bound the first, second,
and third term of (2). To get started we have to collect some facts about cost
and our distribution Q over satisfying assignments. In particular we want to
understand how cost(α0, α, y) and Q(α0, α) change when passing from α0 to αx0 ,
that is, when fixing another variable x according to α.

Lemma C.1. Let α0 and α be fixed and compatible. For a variable variable
x ∈ U let αx0 denote the assignment α0 ∪ {x 7→ α(x)}. The following statements
hold:

(i) Q(αx0 , α) ≥ Q(α0, α), and Q(αx0 , α) = Q(α0, α) if x is frozen.
(ii) cost(αx0 , α, y) ≤ cost(α0, α, y) for any variable y.

When choosing x ∈ U uniformly at random and setting it according to α, then

(iii) Ex∈U [Q(αx0 , α)] =
|Sα0

|
|U| Q(α0, α).

(iv) the cost of a frozen non-forced variable y ∈ Vfr decreases on expectation as

E
x∈U

[cost(αx0 , α, y)] ≤ cost(α0, α, y)− logd |a(y)|
|U| .

Proof. (i) We prove the claim by induction over the size of α0. The claim holds
trivially if α0 is a complete assignment. Otherwise we “unwrap” the definition
of Q(α0, α) and get

|Sα0 | ·Q(α0, α) = |Sα0 | · E
(y,c)∈Sα0

[Q(αy=c0 , α)] =
∑

(y,c)∈Sα0

Q(αy=c0 , α)

=
∑
y∈U

Q(αy0 , α) (since Q(αy=c0 , α) = 0 if c 6= α(y))

= Q(αx0 , α) +
∑

y∈U\{x}
Q(αy0 , α) .

By the induction hypothesis we have Q(αy0 , α) ≤ Q(αy,x0 , α) and thus

|Sα0
| ·Q(α0, α) ≤ Q(αx0 , α) +

∑
y∈U\{x}

Q(αy,x0 , α)

= Q(αx0 , α) + |Sαx0 |Q(αx0 , α) .

28

The last equality follows from “wrapping in” the definition of Q(αx0 , α). Re-
call that Sα0

is the set of pairs (y, c) in Uα0
× [d] such that F ∧ α0 ∧ (y = c)

is satisfiable. Clearly Sα0 ⊇ Sαx0 , but obviously (x, α(x) is in Sα0 but not in
Sαx0 , since x is already set in Sαx0 ! Thus, |Sα0 | ≥ |Sαx0 |+ 1 and therefore

|Sα0
| ·Q(α0, α) ≤ Q(αx0 , α) + |Sαx0 |Q(αx0 , α) =≤ |Sα0

| ·Q(αx0 , α) .

If x is frozen, then all inequalities in this proof can be replaced by equalities,
which proves the equality statement in that case.

(ii) We consider the three cases: the variable y is non frozen, frozen or forced.
Note that if x = y, the statement holds trivially.

If y ∈ Vnf , then cost(α0, α, y) = S. Since the cost of a variable is always less
than S, the statement holds.

If y ∈ Vfr or y ∈ Vfo, then cost(α0, α, y) is the expected logarithm of the
number of non-forbidden values for y in the remainder of the PPSZ run. If
we now fix another variable x to α(x), then this expectation cannot decrease,
because adding a value assignment cannot allow a value that was forbidden.

(iii) We have

|Sα0 | ·Q(α0, α) =
∑

(x,c)∈Sα0

Q(αx=c0 , α) =
∑
x∈U

Q(αx0 , α) = |U| · E
x∈U

[Q(αx0 , α)],

which proves the statement.

(iv) For a fixed, frozen, non-forced variable, we have that

cost(α0, α, y) = E
π

[logd(|A(x, α0, α, π,D)|)].

Let π be a random permutation on V and let z be the variable that comes
next (after α0 has been assigned) in π. By the law of total expectation, we
have that

E
π

[logd(|A(x, α0, α, π,D)|)] = E
z

[E
π

[logd |A(y, α0, α, π,D)|] | z first in π].

If y = z, then the expression in the expectation is logd |A(y, α0)|. After that
step, the cost of y is 0, so the overall cost in that case decreases by at least
logd |A(y, α0)|. This happens with probability 1

|U| , which yields the desired

result.

ut

Lemma 4.4, restated. Choose x ∼ ξ and let αx0 := α0 ∪ {x 7→ α(x)}. Then

E
x∼ξ

[cost(α0, α)− cost(αx0 , α)] ≥ 1

s

G ∑
y∈Vnf

s(y) +
∑
y∈Vfr

logd a(y)

 .

29

Proof. Recall that cost(α0, α) =
∑
y∈U cost(α0, α, y). Therefore

E
x∼ξ

[cost(αx0 , α)− cost(α0, α)] =
∑
y∈U

(
E
x∼ξ

[cost(α0, α, y)− cost(αx0 , α, y)]

)
=
∑
y∈Vnf

E
x∼ξ

[cost(α0, α, y)− cost(αx0 , α, y)] (9)

+
∑
y∈Vfr

E
x∼ξ

[cost(α0, α, y)− cost(αx0 , α, y)] . (10)

The last equality holds since cost(αx0 , α, y) = cost(α0, α, y) = 0 for all y ∈ Vfo.
Let us first bound (9). We fix a variable y ∈ Vnf . With probability ξ(y), it hap-
pens that x = y and then cost(α0, α, y) = G and cost(αx0 , α, y) = 0. Otherwise
x 6= y and cost(α0, α, y) ≥ cost(αx0 , α, y), i.e., the cost does not increase. Thus,

E
x∼ξ

[cost(α0, α, y)− cost(αx0 , α, y)] ≥ G · ξ(y) =
GQ(αy0 , α)

s ·Q(α0, α)
.

Thus, summing over all y we obtain

(9) ≥ G

s ·Q(α0, α)
·
∑
y∈Vnf

Q(αy0 , α) .

Claim:
∑
y∈Vnf

Q(αy0 , α) = Q(α0, α)
∑
y∈Vnf

s(y).

This claim immediately shows that (9) ≥ G
s ·
∑
y∈Vnf

s(y).

Proof (Proof of the claim). Point (iii) of Lemma C.1 states that

s ·Q(α0, α) =
∑
y∈U

Q(αy0 , α)

Expanding s and noting that Q(αy0 , α) = Q(α0, α) for all y ∈ U \Vnf we obtain

Q(α0, α) ·
∑
y∈U

s(y) =
∑
y∈Vnf

Q(αy0 , α) +
∑

y∈U\Vnf

Q(α0, α) .

Therefore we see that∑
y∈Vnf

Q(αy0 , α) = Q(α0, α)
∑
y∈U

(s(y)− Iy 6∈Vnf
) = Q(α0, α)

∑
y∈Vnf

s(y) ,

since s(y) = 1 for all y ∈ U −Vnf .

Now let us turn to (10). Again we fix some y ∈ Vfr and calculate:

E
x∼ξ

[cost(αx0 , α, y)] =
∑
x∈U

Q(αx0 , α)

s ·Q(α0, α)
· cost(αx0 , α, y)

=
|U|
s
· E
x∈u.a.r.U

[
Q(αx0 , α)

Q(α0, α)
· cost(αx0 , α, y)

]
. (11)

We then invoke the following correlation inequality:

30

Proposition C.2. Let A,B ∈ R be random variables and let A` be soem lower
bound on A and Bu be some upper bound on B. Then

E[A ·B] ≤ A` E[B] +Bu E[A]−A`Bu.

Proof. We can write E[A ·B] = E[(A− a) ·B] + aE[B] and then use B ≤ b and
A ≥ a to obtain E[A ·B] ≤ bE[A− a] + aE[B] = bā− ba+ ab̄, as claimed. ut

Set A =
Q(αx0 ,α)
Q(α0,α)

and B = cost(αx0 , α, y). From Lemma C.1 we know that

A` := 1 is a lower bound on A and Bu := cost(α0, α, y) is an upper bound on B;

furthermore, that E[A] = s
|U| and E[B] = cost(α0, α, y)− logd a(y)

|U| . We get that

E
x∈u.a.r.U

[
Q(αx0 , α)

Q(α0, α)
· cost(αx0 , α, y)

]
=

(
cost(α0, α, y)− logd a(y)

|U|

)
+ cost(α0, α, y) · s|U| − cost(α0, α, y)

=
s · cost(α0, α, y)− logd a(y)

|U|

Plugging this into (11) gives

E
x∼ξ

[cost(αx0 , α, y)] ≤ cost(α0, α, y)− logd a(y)

s

and finally

(10) =
∑
y∈Vfr

E
x∼ξ

[cost(α0, α, y)− cost(αx0 , α, y)] =
1

s
·
∑
y∈Vfr

logd a(y) .

This finishes the proof of the lemma. ut

Lemma 4.5, restated.

E
x∼ξ

[logd a(x)] ≤
∑
x∈U logd a(x)

s
+

∑
x∈Vnf

(s(x)− 1)

s
.

Proof. Writing out the expectation we get

E
x∼ξ

[logd a(x)] =
∑
x∈U

ξ(x) logd a(x)

=
∑
x∈U

Q(αx0 , α)

s ·Q(α0, α)
logd a(x)

=
|U|
s

E
x∈u.a.r.U

[
logd a(x) · Q(αx0 , α)

Q(α0, α)

]
.

31

We use the correlation inequality from Proposition C.2 with A =
Q(αx0 ,α)
Q(α0,α)

,

Al = 1, E[A] = s
|U| , B = logd a(x), Bu = 1, E[B] =

∑
x∈U

logd a(x)
|U| , and we get

that

E
x∼ξ

[logd a(x)] ≤ |U|
s
· E
x∈u.a.r.U

[
logd a(x) · Q(αx0 , α)

Q(α0, α)

]
≤ |U|

s
·
(

1 ·
∑
x∈U

logd a(x)

|U| +
s

|U| · 1− 1 · 1
)

=

∑
x∈U logd a(x) + s− |U|

s
.

Finally observe that s−|U| = ∑x∈U (s(x)−1) =
∑
x∈Vnf

(s(x)−1), which yields
the desired result. ut

Lemma 4.6, restated. logd
s
|U| ≥ logd(e)

∑
y∈Vnf

(s(y)−1)
s .

Proof. We use the inequality logd
(
b
a

)
≥ logd(e) · b−ab , which holds whenever

b ≥ a:

logd

(
s

|U|

)
≥ logd(e) ·

s− |U|
s

= logd(e) ·
∑
y∈U (s(y)− 1)

s
.

Then note that s(y)− 1 = 0 for all y ∈ U \Vnf . This is the claimed bound.

32

D Proof of Lemma 1.3

Lemma 1.3, restated. If k ≥ 4 then Sd,k ≥ 1− 1
2 ln(d) and Sd,k = Gd,k.

Recall that Sd,k = E[logd(1 + Y)] for Y defined in Section 1.3. A quick
calculation shows that Lemma 1.3 is equivalent to

Theorem D.1. E[ln(1 + Y)] ≥ ln(d)− 1/2.

It is difficult to obtain an explicit formula for the distribution of Y . Thus, our first
goal will be to replace Y be a nicer random variable X such that Y dominates
X. For this, we look at a different but equivalent random experiment defining
the random variable Y .

D.1 The Random Experiment

Let T be a (possibly countably infinite) rooted tree. Choose π : V (T) → [0, 1]
uniformly at random. If every infinite path starting at the root contains a vertex v
with π(v) < π(root), we say that extinction occurs and denote this event by E(T).
If extinction does not occur, that is, if there is an infinite path starting with the
root on which every vertex has a π-value of at least r, we say survival occurs, and
denote this event by S(T). For two numbers a, b ∈ [0, 1] let a∨b := a+b−ab. The
following lemma is folklore in the theory of Galton-Watson branching processes:

Proposition D.2. Let Tm be the infinite rooted m-regular tree, and let r ∈ [0, 1].
Then Pr[E(Tm)|π(root) = r] is the smallest root of the equation x = (r ∨ x)m.

We denote this probability by Er(Tm). Let d, k ∈ N, set m = (d− 1)(k− 1) and
let Td,k be the tree consisting of k− 1 copies of Tm attached to a common root.
So the root of Td,k has degree k − 1, and every other vertex of Td,k has degree
m = (d− 1)(k − 1).

Proposition D.3. Pr[E(Td,k)|π(root) = r] = (r ∨ Er(Tm))k−1.

From now on we write Er := Er(Td,k) and Sr := 1− Er. So Sr is the prob-
ability of survival in Td,k. We define random variables Y1, . . . , Yd−1 as follows:
Sample R ∈ [0, 1] uniformly at random; then set each Yi to be 1 with probability
SR and 0 with probability ER. Set Y = Y1 + · · ·+ Yd−1.

Observation D.4 The random variable Y we just defined has the same distri-
bution as the variable Y defined in Section 1.3.

In fact, the only reason we re-define Y is that it will be easier to work with Td,k
than with the odd-level even-level trees defined in Section 1.3.

33

D.2 Proof Outline.

It should be clear that increasing k makes survival more likely. Thus E[ln(1+Y)]
increases with k, and it suffices to prove Theorem D.1 for k = 4.

The first challenge is that we have no convenient formula for Sr, the proba-
bility of survival. Let Xc be 1 if in Tc, π(root) ≤ π(v) for at least one child v of
the root. Note that Yc ≤ Xc. Let X = X1 + · · ·+Xd−1, so Y ≤ X. We will show
that in some sense, Y is “not much smaller” than X. This allows us to relate
E[ln(1 + Y)] and E[ln(1 + X)]. The advantage is that the distribution of X is
much easier to understand than that of Y .

In a second step we want to show that E[ln(1 + X)] − ln(d) is increasing in
d. The problem: This is not true. As a way around this, we show that in fact
it decreases very little, and the total decrease above some point d0 sums up to
something in o(d0). For this we use the fact that (X1 + · · · + Xn)/n is “more
concentrated” than (X1 + · · ·+Xn−1)/(n−1), in a way we make formal towards
the end.

In the end, we manage to bound E[ln(1+Y)]−ln(d) from below by something
increasing in d. For d = 130 this “something” is larger than −1/2, and thus we
have shown Theorem D.1 d ≥ 130. For d ≤ 130 we use numerical computation
to show that it holds.

D.3 An Upper Bound on Sr(Td,k)

Lemma D.5. Sr ≥ 1−
(
rm
m−1

)k−1
.

Proof. Note that for r ≥ 1 − 1/m we have Sr = 0, and the right-hand side is
at most 0. Thus, the lemma holds in this case, and we can focus on the case
r ≤ 1− 1/m.

For two numbers a, b ∈ [0, 1] we define a∨b := a+b−ab. Note that rm
m−1 = r∨p

for p = r
(1−r)(m−1) , and p ∈ [0, 1] for 0 ≤ r ≤ 1 − 1/m. Proposition D.3 states

that Er(Td,k) = (r ∨Er(Tm))k and the statement of the lemma is equivalent to
showing that (r ∨Er(Tm))k ≤ (r ∨ p)k. Since ∨ is monotone in both arguments,
this holds once we can show that Er(Tm) ≤ p = r

(1−r)(m−1) . Recall that Er(Tm)

is the smallest root x of

x− (r ∨ x)m

is 0. At x = 0 the above expression is negative and therefore it is negative for
all x ∈ [0, Er(Tm)). Thus, if we can show that p − (r ∨ p)m ≥ 0 we show that

34

p ≥ Er(Tm) and are done. In fact:

p− (r + (1− r)p)m =
r

(1− r)(m− 1)
−
(
r + (1− r) r

(1− r)(m− 1)

)m
=

r

(1− r)(m− 1)
−
(

rm

m− 1

)m
≥ 0⇐⇒(

rm

m− 1

)m
≤ r

(1− r)(m− 1)
⇐⇒

rm−1(1− r) ≤ 1

m

(
m− 1

m

)m−1
.

Elementary calculus shows that the left hand side achieves its maximum for
r = m−1

m , at which point it equals the right-hand side. This finishes the proof.
ut

We want to show that E[ln(1 + Y)] ≥ ln(d) − 1/2. Conditioned on R = r
for a specific r ∈ [0, 1], the Yi are independent binary random variables with
expectation Sr each. In what follows, we abbreviate E[. . . |R = r] by E[. . . |r] for
expressions involving Yi or Xi. Note that E[Xi|r] = 1− rk−1.

Lemma D.6. Let r ≤ 1− 1/m. Then E[ln(1 + Y)|r] ≥ E[ln(1 +X| mrm−1)].

Proof. This holds since E[Yi|r] = Sr ≥ 1−
(
mr
m−1

)k−1
= E[Xi| mrm−1]. ut

With this lemma we can “sandwich” E[ln(1 + Y)] by two expressions involving
E[ln(1 +X)]:

Lemma D.7 (Sandwich Lemma). E[ln(1+X)]− ln(d)
(d−1)(k−1) ≤ E[ln(1+Y)] ≤

E[ln(1 +X)].

Proof. The latter inequality is obvious since Y ≤ X for each point in the prob-
ability space. So let us prove the first inequality:

E[ln(1 + Y)] =

∫ 1

0

E[ln(1 + Y)|r]dr

=

∫ 1− 1
m

0

E[ln(1 + Y)|r]dr

≥
∫ 1− 1

m

0

E

[
ln(1 +X)

∣∣∣∣ rm

m− 1

]
dr

=
m− 1

m

∫ 1

0

E[ln(1 +X)|r]dr

≥
∫ 1

0

E[ln(1 +X)|r]dr − ln(d)

m

= E[ln(1 +X)]− ln(d)

m
.

The last inequality holds since the integrand is always at most ln(d). ut

35

It is still difficult to bound E[ln(1 + X)] since we have no clear measure of
how concentrated 1+X1+ · · ·+Xd−1 is around its mean, even when conditioned
on a particular r. We have just shown that

E[ln(1 + Y)]− ln(d) ≥ E

[
ln

(
1 +X

d

)]
− ln(d)

m
. (12)

To prove Theorem D.1 we want to show that the above expression is at least
−1/2. What we have gained so far is that the distribution of (Xi)i≥1 is simpler
to understand and does not depend on d.

An impractical approach Let µ(r) := E
[
1+X
d

∣∣ r]. We can show that (i)
∫ 1

0
E[ln(µ(r))]dr ≈

−0.445 as d grows; (ii) that 1+X
d ≥ (1− ε)µ(r) except with probability e−Cε

2d;
conclude after some calculations that E[ln(1 + Y)] − ln(d) ≥ −0.445 + ln(1 −
ε) − ln(d)e−Cε

2d. For all sufficiently large d, everything is less than −1/2. The
trouble is the “sufficiently large” would mean d ≥ 100, 000, meaning we’d have
verify our inequality numerically for all d ≤ 100, 000.

A more practical approach. We will show that as d grows, the random variable
1+X
d−1 becomes “more concentrated” in a certain sense, while its expectation stays
the same. This will almost allow us to argue that (12) increases with d (only al-
most because in (12) we have d in the denominator, not d− 1). Then we simply
have to verify that (12) ≥ −1/2 holds for some value d0 and infer that it holds
for all d ≥ d0. For d < d0 we can use numerical computation to verify that
E[ln(1 + Y)] ≥ ln(d)− 1/2.

First, although (12) is not necessarily increasing in d, we will show that it is

“almost increasing”. We define fr(d) = E
[
ln
(

1+X1+···+Xd−1

d−1

)∣∣∣ r] (yes, this is

different from the integrand above) and F (d) =
∫ 1

0
fr(d)dr = E

[
ln
(

1+X1+···+Xd−1

d−1

)]
.

Lemma D.8. Let d0 ≥ 3. Then F (d+ 1) ≥ F (d0 + 1)− Hd0+1

d0
for all d ≥ d0.

With this lemma we get, for all d ≥ d0 ≥ 3:

E[ln(1 + Y)]− ln(d) (13)

≥ E

[
ln

(
1 +X

d

)]
− ln(d)

m
(by (12) above)

= F (d) + ln

(
d− 1

d

)
− ln(d)

(d− 1)(k − 1)

≥ F (d0)− Hd0 + 1

d0
+ ln

(
d− 1

d

)
− ln(d)

(d− 1)(k − 1)
(by Lemma D.8)

≥ F (d0)− Hd0 + 1

d0
+ ln

(
d0 − 1

d0

)
− ln(d0)

(d0 − 1)(k − 1)
. (14)

36

The program sagemath can give an explicit formula for the expression in (14),
in terms of the so-called β-function3. Namely, for k = 4 we have

Pr[X = j] =

∫ 1

0

(
d− 1

j

)(
1− r3

)j (
r3
)d−1−j

dr

=
1

3
·
(
d− 1

j

)
· β(d− j − 2/3, j + 1) .

Thus we can “explicitly” compute (14) for any concrete integer d0 (if β is suf-
ficiently explicit) and then evaluate it numerically. Using sagemath, numerical
evaluation suggests that (14) is greater than −0.483 for d ≥ 200; this proves
the lemma for all d ≥ 200. For smaller values of d we compute E

[
ln
(
1+X
d

)]
−

ln(d)/m numerically; it reaches a minimum of −0.453 at d = 17. This shows
that E[ln(1 + Y)]− ln(d) ≥ −1/2 for all k ≥ 4 and all d.

D.4 Proof of Lemma D.8

We start by bounding the difference between fr(d) and fr(d + 1) for fixed r.
Until further notice, everything is conditioned on this specific value of r. We
write f(d), f(d+ 1) for brevity.

f(d) = E

[
ln

(
1 +X

d− 1

)]
= E

[
ln

(
1

d
+

X

d− 1

)]
+ E

[
ln

(
1 +X

d− 1

)]
−E

[
ln

(
1

d
+

X

d− 1

)]

Lemma D.9 (Concentration of Binomial Distributions). Let (Xi)i≥1 be
independent binary random variables with expectation p each, and define Wn :=
X1+···+Xn

n . Then for every concave function f : [0, 1]→ R, the sequence E[f(Wn)]
is increasing in n.

Proof. Suppose x = j
n+1 for some integer j ∈ {0, . . . , n+ 1}, so Pr[Wn+1 = x] is

positive. Note that E[Wn|Wn+1 = x] = x, and therefore E[Wn|Wn+1] = Wn+1.
In other words, the sequence Wk,Wk−1,Wk−2, . . . ,W1 is a martingale. Thus,
together with Jensen’s inequality we obtain:

E[f(Wn)] = E[E[f(Wn|Wn+1)]]

≤ E[f(E[Wn|Wn+1])] (Jensen’s Inequality)

= E[f(Wn+1)] .

3 https://en.wikipedia.org/wiki/Beta function

37

Since x 7→ ln
(
1
d + x

)
is a concave function on [0, 1], we conclude that E

[
ln
(

1
d + X1+···+Xd−1

d−1

)]
≤

E
[
ln
(
1
d + X1+···+Xd

d

)]
= f(d+ 1). Thus,

f(d) = E

[
ln

(
1 +X

d− 1

)]
= E

[
ln

(
1

d
+

X

d− 1

)]
+ E

[
ln

(
1 +X

d− 1

)
− ln

(
1

d
+

X

d− 1

)]
≤ f(d+ 1) + E

[
ln

(
1 +X

d− 1

)
− ln

(
1

d
+

X

d− 1

)]
(Lemma D.9)

= f(d+ 1) + E

[
ln

(
1 +

1

(d− 1)(X + 1) +X

)]
(short calculation)

≤ f(d+ 1) + E

[
1

(d− 1)(X + 1)

]
(since ln(1 + x) ≤ x and X ≥ 0)

= f(d+ 1) +
1

d− 1
E

[
1

X + 1

]
.

The inequality we have just derived holds for fr, for every r ∈ [0, 1]. To obtain
an inequality for F , we have to integrate over r:

F (d) ≤ F (d+ 1) +
1

d− 1

∫ 1

0

E

[
1

X + 1

∣∣∣∣ r] dr . (15)

We will bound the integral from above. We sample U1 . . . Ud−1 as follows: Choose
r ∈ [0, 1] and then set each Ui to 1 with probability 1− r, uniformly at random,
and set U = U1 + · · · + Ud−1. Clearly E[Ui|r] = 1 − r ≤ 1 − r3 = E[Xi|r]
and therefore E

[
1

X+1 |r
]
≤ E

[
1

U+1

]
. Here is a combinatorial interpretation of

U : Choose d values u1, . . . , ud uniformly at random and count how many are
larger than ud. The equivalence becomes clear once we condition on ud = r: For
i < d we have Pr[ui ≥ ud|ud = r] = 1 − r. By symmetry, U is uniformly over
{0, . . . , d− 1}, and therefore

E

[
1

1 + U

]
=

1

d

d∑
i=1

1

i
=
Hd

d
.

To summarize, we obtain

F (d) ≤ F (d+ 1) +
ln(d) + 1

d(d− 1)
≤ F (d+ 1) +

Hd

d(d− 1)
. (16)

38

By summation, we obtain for d ≥ d0:

F (d+ 1) ≥ F (d0 + 1)−
d∑

k=d0+1

Hk

k(k − 1)

= F (d0 + 1)−
(

1

d0
− 1

d

)
(Hd0 + 1) +

Hd −Hd0

d
(several lines of computation)

≥ F (d0 + 1)− Hd0 + 1

d0
.

This proves Lemma D.8.

39

E Asymptotic Behavior of PPSZ and PPZ for large
d—Proof of Theorem 1.4

We want to define a notion of “savings”, i.e., the advantage a (d, k)-ClSP algo-
rithm has over the trivial dn algorithm.

Definition E.1. We say the savings of some algorithm for (d, k)-ClSP are c if
its running time is O∗(dn/2cn).

Observation E.2 The savings of PPSZ for (2, k)-ClSP (i.e., for k-SAT) are
E2,k := 1− S2,k.

Here, E2,k is the “extinction probability” in an infinite k − 1-ary tree with
π(root) uniformly at random in [0, 1].

Theorem 1.4 For large d, the savings of PPSZ for (d, k)-ClSP converge to

log2(e)E2,k where E2,k = −
∫ 1

0
ln(1− rk−1)dr .

Thus, we see that the savings for large d are a constant factor ≈ 1.44 larger
than for d = 2.

E.1 PPZ for Large d

Lemma E.3. For large d, the savings of PPSZ converge to those of PPZ.

Proof. The running time of PPZ is at most dE[logd(1+X)n] = eE[ln(1+X)n]. Thus,
the savings c of PPZ are given by

ln(d)−E[ln(1 +X)]

ln(2)
.

Similarly, the savings of PPSZ are ln(d)−E[ln(1+Y)]
ln(2) . By the Sandwich Lemma

(Lemma D.7) from the previous section we get

|E[ln(1 + Y)]−E[ln(1 +X)]| ≤ ln(d)

(k − 1)(d− 1)
.

Thus, the difference converges to 0 as d grows and so do the savings. ut

From now on we can focus on the savings of PPZ. First we show that one
additional application of Jensen’s inequality is tight in the limit:

Lemma E.4. The difference between E[ln(1 + X)] =
∫ 1

0
E[ln(1 + X)|r]dr and∫ 1

0
ln(1 + E[X|r])dr converges to 0 for large d.

40

Proof. By Jensen’s inequality, E[ln(1 +X)|r] ≤ ln(1 + E[X|r]), so the difference
is always at most 0. Let us now prove an upper bound. Fix some r ≤ 1− 1

4√d−1
and write E[X|r] =: E. Then for every ε ≥ 0 we have

E[ln(1 +X)|r] ≥ ln(1 + E(1− ε)) · (1− Pr[X ≤ E(1− ε)]) (17)

We bound the probability using Chebyshev’s inequality:

Pr[X ≥ E(1− ε)] ≤ Var(X)

ε2E2

≤ d− 1

ε2(d− 1)2(1− rk−1)2

≤ 1

ε2(d− 1)(1− r)2 (since k ≥ 2)

≤ 1

ε2
√
d− 1

(since 1− r ≥ 1
4√d−1)

We bound the first term of (17):

ln(1 + E(1− ε)) = ln(1 + E) + ln

(
1− εE

1 + E

)
≥ ln(1 + E)− 2ε

for sufficiently small ε. Altogether we get the following bound:

E[ln(1 +X)|r] ≥ (ln(1 + E)− 2ε) ·
(

1− 1

ε2
√
d− 1

)
≥ ln(1 + E)− 2ε− ln(d)

ε2
√
d− 1

(since ln(1 + E) ≤ ln(d))

This holds whenever r ≤ 1− 1
4√d−1 . For larger values of r we simply observe that

E[ln(1 +X)|r] ≥ 0 and ln(1 + E[X|r]) ≤ ln(d). Altogether we get∫ 1

0

E[ln(1 +X)|r]dr −
∫ 1

0

ln(1 + E[X|r])dr ≥ −2ε− ln(d)

ε2
√
d− 1

− ln(d)
4
√
d− 1

.

For an appropriate choice of ε we see that the right-hand side converges to 0. ut
We plug this convergence result into our estimate for E[ln(1 +X)]:

E[ln(1 +X)]− ln(d) ≈
∫ 1

0

ln(1 + E[X|r])dr − ln(d)

=

∫ 1

0

ln(1 + (d− 1)(1− rk−1))dr − ln(d)

=

∫ 1

0

ln(d− (d− 1)rk−1)dr − ln(d)

=

∫ 1

0

ln

(
1− d− 1

d
rk−1

)
dr .

Let us abbreviate a := k − 1.

41

Lemma E.5. The integral
∫ 1

0
ln
(
1− d−1

d ra
)
dr is decreasing in d and converges

from above to
∫ 1

0
ln (1− ra) dr.

Lemma E.6. −
∫ 1

0
ln (1− ra) dr = E2,k.

Putting everything together we obtain an equation for the savings of PPSZ:

lim
d→∞

ln(d)−E[ln(1 +X)]

ln(2)
=
E2,k

ln(2)
,

which proves the theorem.

E.2 Proof of Lemma E.6

Part of the following calculation is actually similar to the one computing the
asymptotical running time of PPSZ for large k (as opposed to large d) in the
original PPSZ paper [10]. Using the Taylor expansion ln(1 − x) = −∑∞n=1

xn

n
we obtain

−
∫ 1

0

ln (1− ra) dr =

∫ 1

0

∞∑
n=1

ran

n
dr

=

∞∑
n=1

∫ 1

0

ran

n
dr

=

∞∑
n=1

1

n(an+ 1)
.

Let us briefly focus on a single term in the sum:

1

n(an+ 1)
=

1

n
− a

an+ 1
=

1

n
− 1

n+ 1/a
=

∫ 1

0

(
tn−1 − tn+1/a−1

)
dt .

Plugging this into our above calculation we get

−
∫ 1

0

ln (1− ra) =

∞∑
n=1

∫ 1

0

(
tn−1 − tn+1/a−1

)
dt

=

∞∑
n=0

∫ 1

0

tn
(

1− t1/a
)
dt

=

∫ 1

0

(
1− t1/a

) ∞∑
n=0

tndt

=

∫ 1

0

1− t1/a
1− t dt .

We claim that this last expression is E2,k = 1− S2,k, the extinction probability
in the k − 1-ary tree. Recall that

S2,k = E[log2(1 + Y1)] = Pr[Y1 = 1] .

42

Here, Y1 is the indicator variable that the tree T1 after random deletion contains
an infinite path starting at the root. This is the “survival probability”. The
extinction probability is E2,k := 1 − S2,k. Conditioned on π(root) = r we see
that Pr[Y1 = 0|π(root) = r] is the smallest root Q of the equation

Q = (r + (1− r)Q)k−1 .

Let us denote this value by Q(r). We do not have a closed formula for Q(r).
However, we can easily solve the above equation for r = r(Q):

r(Q) =
Q1/(k−1) −Q

1−Q =
Q1/a −Q

1−Q .

Note that Q(0) = 0, Q(1) = 1 and Q is non-decreasing for r ∈ [0, 1]. Thus, by a
geometric consideration it becomes clear that

1− S2,k = E2,k =

∫ 1

0

Q(r)dr = 1−
∫ 1

0

r(Q)dQ =

∫ 1

0

1−Q1/a

1−Q dQ =

∫ 1

0

1− t1/a
1− t dt .

This finishes the proof of Lemma E.6. ut

E.3 Proof of Lemma E.5

Write Ld :=
∫ 1

0
ln
(
1− d−1

d ra
)
dr and R :=

∫ 1

0
ln (1− ra) dr (L and R stand

for left and right). By comparing the integrand pointwise it is clear that Ld is
decreasing in d and Ld ≥ R for every d. Thererfore limd→∞ Ld exists and is at
least R.

We show that limd→∞ ≤ R. Set ε := 1/d and consider any δ ∈ [0, 1):

Ld =

∫ 1

0

ln (1− (1− ε)ra) dr ≤
∫ 1−δ

0

ln (1− (1− ε)ra) dr

since the integrand is negative. On [0, 1 − δ] the integrand converges uniformly
to ln(1− ra) as ε→ 0 and thus

lim
d→∞

Ld ≤
∫ 1−δ

0

ln (1− ra) dr .

This inequality holds for every δ. For δ → 0 the right-hand side converges to R,
which proves the lemma. ut

	The PPSZ Algorithm for Constraint Satisfaction Problems on More Than Two Colors
	Introduction
	Which Running Time Can We Expect
	Previous Results
	Our Contribution
	Notation

	The PPSZ Algorithm
	Understanding |A(x,0,,)|: Proof of Lemma 2.5
	Construction of Critical Clause Trees

	General (d,k)-ClSP
	Definitions and Notation
	A distribution over satisfying assignments

	Conclusion and Open Problems
	Analysis of Critical Clause Trees
	Analyzing Critical Clause Trees
	An Alternative View of Permutations

	Computing Sd,k
	Computing yp
	Making Sd,k More Explicit

	Remaining Proofs for General (d,k)-ClSP
	Proof of Lemma 1.3
	The Random Experiment
	Proof Outline.
	An Upper Bound on Sr(Td,k)
	Proof of Lemma D.8

	Asymptotic Behavior of PPSZ and PPZ for large d—Proof of Theorem 1.4
	PPZ for Large d
	Proof of Lemma E.6
	Proof of Lemma E.5

